Long-term data and outcomes from the Nachusa Grasslands restoration

Elizabeth M. Bach

Research Scientist

Nachusa Grasslands

The Nature Conservancy in Illinois

Thank you Wild Ones Rock River Valley!

Acknowledgements

Members, past and present, of the:

Peoria, Meskwaki, Sauk, Myaamia, Kiikaapoi, and Potawatomi Nations

The Nature Conservancy in Illinois

Bill Kleiman

Cody Considine

Dee Hudson

Charles Larry

Pete Guiden

Holly Jones

Nick Barber

Jenn Chakravorty

20 years of plant community monitoring

Monitoring impacts of bison reintroduction on plant communities

Restoring animal communities

Are management practices sustaining plant diversity, including rare plants, in native prairies and savannas?

Do restored prairies support comparable levels of plant diversity and conservatism to native prairies?

Native prairies distinct, changed over time

Savannas more similar, changed over time

Planted prairies similar, change not consistent

Native prairies distinct from planted prairies

Planted

Native

Are management practices sustaining plant diversity, including rare plants, in native prairies and savannas?

Yes

Do restored prairies support comparable levels of plant diversity and conservatism to native prairies?

Not quite

20 years of plant community monitoring

Monitoring impacts of bison reintroduction on plant communities

Restoring animal communities

How will bison grazing impact plant community?

H₁: Increase plant diversity by suppressing dominant grasses

H_{1A}: Decrease plant diversity through grazing and disturbance

 H_0 : No change in plant diversity

- 22 bison exclosures
- Experimental design: Dr. John Taft & Dr. Sara Baer
- Synthesis of 2015-2020 data:
 Jenn Chakravorty

Chakravorty et al. in prep

Fenced grazing exclosures

3 parallel transects inside & outside fence

Species composition & cover in 0.5m² quadrats

Data from: pre-bison, 3yr, 5yr

No grazing affect on plant diversity

Chakravorty et al. in review

Trend in non-native:native species ratio

Trend in non-native:native species ratio

Trend in grass:forb ratio in savanna

Distinct plant communities in each habitat

PERMANOVA

community type: (p < 0.01, $R^2 = 0.36$)

Bison grazing has little/no impact on plant community in the first 5 years

How will bison grazing impact plant community?

H₁: Increase plant diversity by suppressing dominant grasses

H_{1A}: Decrease plant diversity through grazing and disturbance

H₀: No change in plant diversity

Response at Nachusa differs from Konza

Analysis by: Holly Jones

On-going long-term data collection

Analysis by: Holly Jones

20 years of plant community monitoring

Monitoring impacts of bison reintroduction on plant communities

Restoring animal communities

Effects of management outweigh effects of plant diversity on restored animal communities in tallgrass prairies

Peter W. Guiden^{a,1}, Nicholas A. Barber^b, Ryan Blackburn^c, Anna Farrell^a, Jessica Fliginger^a, Sheryl C. Hosler^d, Richard B. King^{a,e}, Melissa Nelson^a, Erin G. Rowland^a, Kirstie Savage^a, John P. Vanek^a, and Holly P. Jones^{a,e}

Age of planting Prescribed fire Bison grazing

Is animal biodiversity shaped by management or plant communities?

Animal biodiversity

Taxonomic diversity Phylogenetic diversity

Plant biodiversity

Taxonomic diversity Phylogenetic diversity Functional diversity

Management actions

Guiden et al. 2021

Is animal biodiversity shaped by management, or plant communities?

Is animal biodiversity shaped by management, or plant communities?

Plant community surveys (4 years)

Small-mammal live trapping (4 years)

Snake cover-board trapping (I year)

Invertebrate pitfall traps (2 years)

Total: 278 species

5 distinct communities

Putting it all together: structural equation models

 Model Field of Dreams prediction: plant-driven effects

 Test for missing paths: management-driven effects

 Compare the strength of different pathways

Management-driven effects were six times stronger than plant-driven effects

Management had positive and negative effects

Is animal biodiversity shaped by management or plant communities?

Management practices and plant biodiversity important

Bison responses: Beyond 5 years

On-going restoration work & new plantings

Science at Nachusa

40 researchers from 16 different institutions

80 peer-reviewed publications

Annual Science Symposium (April 20, 2024)

For 2024: Friends of Nachusa awarded >\$70,000 among 12 researchers

